October 22, 2019 Volume 15 Issue 40

Motion Control News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Overhung load adaptors provide load support and contamination protection

Overhung load adaptors (OHLA) provide both overhung radial and axial load support to protect electrified mobile equipment motors from heavy application loads, extending the lifetime of the motor and alleviating the cost of downtime both from maintenance costs and loss of production. They seal out dirt, grime, and other contaminants too. Zero-Max OHLAs are available in an extensive offering of standard models (including Extra-Duty options) for typical applications or customized designs.
Learn more.


Why choose electric for linear actuators?

Tolomatic has been delivering a new type of linear motion technology that is giving hydraulics a run for its money. Learn the benefits of electric linear motion systems, the iceberg principle showing total cost of ownership, critical parameters of sizing, and conversion tips.
Get this informative e-book. (No registration required)


New AC hypoid inverter-duty gearmotors

Bodine Electric Company introduces 12 new AC inverter-duty hypoid hollow shaft gearmotors. These type 42R-25H2 and 42R-30H3 drives combine an all-new AC inverter-duty, 230/460-VAC motor with two hypoid gearheads. When used with an AC inverter (VFD) control, these units deliver maintenance-free and reliable high-torque output. They are ideal for conveyors, gates, packaging, and other industrial automation equipment that demands both high torque and low power consumption from the driving gearmotor.
Learn more.


Next-gen warehouse automation: Siemens, Universal Robots, and Zivid partner up

Universal Robots, Siemens, and Zivid have created a new solution combining UR's cobot arms with Siemens' SIMATIC Robot Pick AI software and Zivid's 3D sensors to create a deep-learning picking solution for warehouse automation and intra-logistics fulfillment. It works regardless of object shape, size, opacity, or transparency and is a significant leap in solving the complex challenges faced by the logistics and e-commerce sectors.
Read the full article.


Innovative DuoDrive gear and motor unit is UL/CSA certified

The DuoDrive integrated gear unit and motor from NORD DRIVE-SYSTEMS is a compact, high-efficiency solution engineered for users in the fields of intralogistics, pharmaceutical, and the food and beverage industries. This drive combines a IE5+ synchronous motor and single-stage helical gear unit into one compact housing with a smooth, easy-to-clean surface. It has a system efficiency up to 92% and is available in two case sizes with a power range of 0.5 to 4.0 hp.
Learn more.


BLDC flat motor with high output torque and speed reduction

Portescap's 60ECF brushless DC slotted flat motor is the newest frame size to join its flat motor portfolio. This 60-mm BLDC motor features a 38.2-mm body length and an outer-rotor slotted configuration with an open-body design, allowing it to deliver improved heat management in a compact package. Combined with Portescap gearheads, it delivers extremely high output torque and speed reduction. Available in both sensored and sensorless options. A great choice for applications such as electric grippers and exoskeletons, eVTOLs, and surgical robots.
Learn more and view all the specs.


Application story: Complete gearbox and coupling assembly for actuator system

Learn how GAM engineers not only sized and selected the appropriate gear reducers and couplings required to drive two ball screws in unison using a single motor, but how they also designed the mounting adapters necessary to complete the system. One-stop shopping eliminated unnecessary components and resulted in a 15% reduction in system cost.
Read this informative GAM blog.


Next-gen motor for pump and fan applications

The next evolution of the award-winning Aircore EC motor from Infinitum is a high-efficiency system designed to power commercial and industrial applications such as HVAC fans, pumps, and data centers with less energy consumption, reduced emissions, and reduced waste. It features an integrated variable frequency drive and delivers upward of 93% system efficiency, as well as class-leading power and torque density in a low-footprint package that is 20% lighter than the previous version. Four sizes available.
Learn more.


Telescoping linear actuators for space-constrained applications

Rollon's new TLS telescoping linear actuators enable long stroke lengths with minimal closed lengths, which is especially good for applications with minimal vertical clearance. These actuators integrate seamlessly into multi-axis systems and are available in two- or three-stage versions. Equipped with a built-in automated lubrication system, the TLS Series features a synchronized drive system, requiring only a single motor to achieve motion. Four sizes (100, 230, 280, and 360) with up to 3,000-mm stroke length.
Learn more.


Competitively priced long-stroke parallel gripper

The DHPL from Festo is a new generation of pneumatic long-stroke grippers that offers a host of advantages for high-load and high-torque applications. It is interchangeable with competitive long-stroke grippers and provides the added benefits of lighter weight, higher precision, and no maintenance. It is ideal for gripping larger items, including stacking boxes, gripping shaped parts, and keeping bags open. It has high repetition accuracy due to three rugged guide rods and a rack-and-pinion design.
Learn more.


Extend your range of motion: Controllers for mini motors

FAULHABER has added another extremely compact Motion Controller without housing to its product range. The new MC3603 controller is ideal for integration in equipment manufacturing and medical tech applications. With 36 V and 3 A (peak current 9 A), it covers the power range up to 100 W and is suitable for DC motors with encoder, brushless drives, or linear motors.
Learn more.


When is a frameless brushless DC motor the right choice?

Frameless BLDC motors fit easily into small, compact machines that require high precision, high torque, and high efficiency, such as robotic applications where a mix of low weight and inertia is critical. Learn from the experts at SDP/SI how these motors can replace heavier, less efficient hydraulic components by decreasing operating and maintenance costs. These motors are also more environmentally friendly than others.
View the video.


Tiny and smart: Step motor with closed-loop control

Nanotec's new PD1-C step motor features an integrated controller and absolute encoder with closed-loop control. With a flange size of merely 28 mm (NEMA 11), this compact motor reaches a max holding torque of 18 Ncm and a peak current of 3 A. Three motor versions are available: IP20 protection, IP65 protection, and a motor with open housing that can be modified with custom connectors. Ideal for applications with space constraints, effectively reducing both wiring complexity and installation costs.
Learn more.


Closed loop steppers drive new motion control applications

According to the motion experts at Performance Motion Devices, when it comes to step motors, the drive technique called closed loop stepper is making everything old new again and driving a burst of interest in the use of two-phase step motors. It's "winning back machine designers who may have relegated step motors to the category of low cost but low performance."
Read this informative Performance Motion Devices article.


Intelligent compact drives with extended fieldbus options

The intelligent PD6 compact drives from Nanotec are now available with Profinet and EtherNet/IP. They combine motor, controller, and encoder in a space-saving package. With its 80-mm flange and a rated power of 942 W, the PD6-EB is the most powerful brushless DC motor of this product family. The stepper motor version has an 86-mm flange (NEMA 34) and a holding torque up to 10 Nm. Features include acceleration feed forward and jerk-limited ramps. Reduced installation time and wiring make the PD6 series a highly profitable choice for machine tools, packaging machines, or conveyor belts.
Learn more.


U.S. military scientists develop a new way for robots to exchange directed messages

By CCDC Army Research Laboratory

Military robots of the future will provide a wireless, reliable, and stealthy communication capability for Soldiers using new technology pioneered by U.S. Army researchers.

Scientists at the U.S. Combat Capabilities Development Command Army Research Laboratory (ARL), the Army's corporate research laboratory, developed a novel approach to improve the communications range and allow for covert behavior using a team of robots for future Army multi-domain operations.

Specifically, the researchers proposed and demonstrated an approach for enabling targeted wireless communication by exploiting miniature antennas and coordination of intelligent ground robots -- each of which has a mounted antenna.

The top two colorful images displayed on the screens are radiation patterns simulated using a full-wave electromagnetic simulation software for the single robot (top right) and two robot case (top left). The image shows the key concept that the two robots equipped with small antennas can team up and adaptively configure their locations to direct the radiated energy in a desired direction. [Photo Credit: Jeffrey Twigg, ARL]

 

 

 

 

"The role of antennas in the communication system is to provide a way to efficiently couple energy between a radio and the environment," said ARL electronics engineer Dr. Fikadu Dagefu. "Some key antenna parameters include the radiation efficiency, which measures how well the antenna couples energy to and from the radio, and the directivity that measures how well the radiation can be focused in a direction of interest."

At lower frequencies, such as very high frequency (VHF) band or lower, Dagefu said existing electrically small antennas, or ESAs, are very inefficient, and other conventional designs are prohibitively large, limiting their application -- especially for low-power mobile robotic networking. Furthermore, these ESAs radiate in nearly all directions due to their small aperture, which Dagefu said is undesirable since this makes the transmitted signal easily detectable by potential adversaries.

"The challenge of designing systems with small form-factor that can create directional radiation pattern has been a long-standing and very challenging problem," he said. "Building on recent advances in developing highly miniature and efficient small antennas and their integration on small mobile agents along with software-defined radios, we developed an approach that enables directional links at lower frequencies for targeted and robust communications at low frequencies."

Unlike conventional multi-antenna systems that either deploy large directional antennas -- such as large dish or horn-type antennas, or static antenna arrays, which are not appropriate for integration on small agents with limited battery power, the researchers took a different approach. The research team envisioned using an ensemble of small low-power ground robots that coordinate and adaptively re-configure their locations and antenna element sizes to create an adaptive and re-configurable parasitic array.

"One of the advantages of deploying robots for this task is that they can perceive and act in the physical and electromagnetic domains, which is very difficult for humans," said ARL researcher Jeffrey Twigg. "This is why antenna array design is traditionally conducted in a lab with specialized equipment."

He said they created a parasitic array with these robot-mounted antennas -- this means that passive antennas in the array parasitize the energy of the active antenna connected to a radio to re-direct the overall energy of the array.

"Unlike conventional phased arrays, one advantage parasitic arrays have is that they are significantly less complex, since the various nodes need not be synchronized and calibrated," Dagefu said. "The proposed system, which is inspired by a Yagi-Uda-type antenna, consists of a single excited ESA integrated on one of the robots and a group of robots equipped with parasitic antenna elements that are passive, meaning their inputs are shorted and not connected to a radio."

Dagefu said some of the key steps in this research effort include investigation of the effect of inherent position and orientation uncertainties as well as the effect of the ground electromagnetic characteristics on the performance of the mobile parasitic array.

Realizing conventional free-space designs are not valid when the above-mentioned uncertainties are present, the researchers developed an adaptive design strategy where the robots coordinated their inter-element spacing and parasitic element height to adapt to the ground conditions. The resulting design provides an optimal design that provides similar performance as the free-space case.

The results of the research are in a paper titled, "Directional Communication Enabled by Mobile Parasitic Elements." It received a best paper award based on its content, presentation, and military relevance at the 2019 International Conference on Military Communications and Information Systems Conference, sponsored by NATO agencies, in Budva, Montenegro.

The CCDC Army Research Laboratory (ARL) is an element of the U.S. Army Combat Capabilities Development Command.

Published October 2019

Rate this article

[U.S. military scientists develop a new way for robots to exchange directed messages]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2019 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy